
1 

Copula-based synthetic data generation for machine learning emulators 

in weather and climate: application to a simple radiation model 
 

David Meyer1,2, Thomas Nagler3, Robin J. Hogan4,1 

1Department of Meteorology, University of Reading, Reading, UK, 2Department of Civil and Environmental Engineering, 5 

Imperial College London, London, UK, 3Mathematical Institute, Leiden University, Leiden, The Netherlands, 4European Centre 

for Medium-Range Weather Forecasts, Reading, UK 

 

Correspondence to David Meyer (d.meyer@pgr.reading.ac.uk) 

Abstract 10 

Can we improve machine learning (ML) emulators with synthetic data? The use of real data for training ML models is often 

the cause of major limitations. For example, real data may be (a) only representative of a subset of situations and domains, 

(b) expensive to source, (c) limited to specific individuals due to licensing restrictions. Although the use of synthetic data is 

becoming increasingly popular in computer vision, the training of ML emulators in weather and climate still relies on the use 

of real data datasets. Here we investigate whether the use of copula-based synthetically-augmented datasets improves the 15 

prediction of ML emulators for estimating the downwelling longwave radiation. Results show that bulk errors are cut by up 

to 75 % for the mean bias error (from 0.08 to -0.02 W m-2) and by up to 62 % (from 1.17 to 0.44 W m-2) for the mean absolute 

error, thus showing potential for improving the generalization of future ML emulators.  

https://doi.org/10.5194/gmd-2020-427
Preprint. Discussion started: 5 January 2021
c© Author(s) 2021. CC BY 4.0 License.



2 

1. Introduction 

The use of machine learning (ML) in weather and climate is becoming increasingly relevant (Huntingford et al., 2019; 20 

Reichstein et al., 2019). Two main strategies are currently identified for training ML models: one where input and output 

pairs are provided, and a second where inputs are provided, and outputs are generated using a physical model; here we 

define the former as observation-based training (OBT) and the latter as emulation-based training (EBT). Although OBTs are 

the most common training strategy currently used in ML, EBTs allow the creation of fast surrogate ML models (or emulators) 

to replace complex physical parameterisation schemes (e.g. Chevallier et al., 1998; Krasnopolsky et al., 2002; Nowack et al., 25 

2018). 

 

In ML, the best way to make a model more generalizable is to train it on more data (Goodfellow et al., 2016). Although this 

is fairly easy to do for classification tasks (e.g. by translating or adding noise to an image), this may not be the case for most 

regression tasks found in weather and climate. In this context, it is common to work with high dimensional and strongly 30 

dependent data (e.g. between physical quantities such as air temperature, humidity, and pressure across grid points), and 

although this dependence may be well approximated by physical laws (e.g. the ideal gas law for conditions found in the 

Earth’s atmosphere), the generation of representative data across multiple dimensions is challenging. 

 

To serve a similar purpose to that of real data, synthetically generated data need to preserve the statistical properties of real 35 

data in terms of the individual behaviour and (inter-)dependences. Several methods may be suitable for generating synthetic 

data generation such as copulas (e.g. Patki et al., 2016), variational autoencoders (e.g. Wan et al., 2017) and, more recently, 

generative adversarial networks (GANs; e.g. Xu and Veeramachaneni, 2018). Although the use of GANs for data generation 

is becoming increasingly popular amongst the core ML community, these require multiple models to be trained, leading to 

difficulties and computational burden (Tagasovska et al., 2019). Variational approaches, on the other hand, make (strong) 40 

distributional assumptions, potentially detrimental to the generative model (Tagasovska et al., 2019). Compared to black-

box deep learning models, the training of (vine) copulas is relatively easy and robust, while taking away a lot of guesswork in 

specifying hyperparameters and network architecture.  Furthermore, copula models give a direct representation of the 

statistical distribution, which makes them easier to interpret and tweak after training. As such, the use of copula-based 

models have been effective in generating synthetic data that are very close to the real data (Patki et al., 2016) in the context 45 

of privacy protection. 

 

The goal of this paper is to determine whether training ML models with synthetically augmented datasets improves 

predictions. Here, we first summarize and formalize four main strategies identified to train ML models in a method that may 
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be generalizable beyond the scope of this paper (section 2) and implement it using a simple radiation physical, copula and 50 

ML model (sections 2.2-2.6). We then evaluate results using separate error metrics for copula and ML models (section 3) and 

report them (section 4) before concluding with a discussion and prospects for future research (section 5). 

 

2. Material and methods 

2.1 Overview 55 

The general method for training a ML model involves the use of paired inputs 𝑋 = {𝒙1, … , 𝒙𝑛} and outputs 𝑌 = {𝒚1, … , 𝒚𝑛} 

to produce weights 𝒘  that correspond to the best function approximation for a specific model architecture and 

configuration. For inference, the trained ML model uses the previously learned weights 𝒘 to predict new outputs 𝑌∗ from 

unseen inputs 𝑋∗. In the context of weather and climate, two main ML training strategies may be identified: observation-

based training (OBT; Figure 1 A and B) and emulation-based training (EBT; Figure 1 C and D). In the former, both 𝑋 and 𝑌 are 60 

used to train the ML model. In the latter, 𝑌 is first generated with a physical model from 𝑋, and fed to the ML model for 

training. Although OBT strategies are more common, EBT may be useful to create surrogate ML models (i.e. emulators) that 

are faster, but only slightly less accurate, than their physical counterparts (e.g. Chevallier et al., 1998). In this paper we 

introduce an additional step, that is, the generation of synthetic data (Figure 1 B and D), with the goal of improving the 

prediction of ML models. We define a general methodology (Figure 1) for training ML models using OBT and EBT strategies, 65 

and with (Figure 1 B and D) or without (Figure 1 A and D) data generation, as follows: 

 

A. OBT: Standard method for training ML models. Inputs 𝑋 and outputs 𝑌 are used to train the ML model (Figure 1 A). 

B. OBT with data generation: Generation of synthetic samples for training ML models. A data generation model (here 

copula) is fitted to both inputs 𝑋 and outputs 𝑌 to generate synthetic inputs 𝑋′ and outputs 𝑌′. 𝑋′ and 𝑌′ are used to 70 

train the ML model (Figure 1 B). 

C. EBT: Standard method for training ML emulators. Inputs 𝑋 are fed to the physical model to generate corresponding 

outputs 𝑌. 𝑋 and 𝑌 used to train the ML model (Figure 1 C). 

D. EBT with data generation: Generation of synthetic samples for training ML emulators. A data generation model (here 

copula) is fitted to inputs 𝑋 only to generate synthetic inputs 𝑋′. Inputs 𝑋′ are fed to the physical model to generate 75 

corresponding outputs 𝑌′. 𝑋′ and 𝑌′ are used to train the ML model (Figure 1 D). 
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Figure 1. Main strategies identified for training machine learning (ML) models in weather and climate: (A) traditional method for training 
using input and output pairs and (C) if a physical model is available (model emulation) the corresponding output targets are generated 80 
by a physical model. B and D are the same as A and C respectively with the addition of data generation (this paper). 

 

To evaluate whether ML models trained with both real and synthetic data (i.e. B and D) have a lower prediction error than 

those trained with only the real data (i.e. A or C), here we focus on the prediction of vertical profiles of longwave radiation 

from those of dry-bulb air temperature, atmospheric pressure, and cloud optical depth. This task is chosen at it allows us to: 85 

(i) evaluate copula-based models for generating correlated multidimensional data (e.g. with dependence across several 

quantities and grid points), some of which (e.g. cloud optical depth) are highly non-Gaussian; (ii) develop a simple and fast 

toy physical model that may be representative of other physical parameterizations such as radiation, (urban) land surface, 

cloud, or convection schemes; and (iii) develop a fast and simple ML model used to compute representative statistics. We 

then define case A (or C) as the baseline and generate six different subcases from case B and D, each using (i) three levels of 90 

data augmentation factors (i.e. either 1x, 5x or 10x the number of profiles in the real dataset), (ii) generated from three 

different copula classes. 

 

In the following sections we give background information and specific implementation details about the general method 

used for setting up the source data (section 2.2), data generation (section 2.3), target generation (section 2.4), and estimation 95 

training (section 2.5) as shown in Figure 1. 
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2.2 Source Data 

Depending on the strategy used, source data may (i) be used as input to the prediction, generative, or physical model, (ii) 

contain input and output pairs or inputs only, (iii) consist of real or synthetically generated data (Figure 1). Furthermore, 100 

depending on whether source data are used for training or for inference, different subsets may be used at different times. 

 

Here, we define a source dataset derived from the EUMETSAT Numerical Weather Prediction Satellite Application Facility 

(NWP-SAF) dataset (Eresmaa and McNally, 2014). The NWP-SAF is a dataset of common meteorological variables used to 

evaluate the performance of radiation models (e.g. Hogan and Matricardi, 2020). It contains a representative collection of 105 

25 000 vertical profiles of the atmosphere from global operational short-range ECMWF (European Centre for Medium-Range 

Weather Forecasts) forecasts for 137 vertical levels, correlated in more than one dimension (between quantities and spatially 

across levels), and extending from top of the atmosphere (TOA; 0.01 hPa; level 1;) to the surface (bottom of the atmosphere; 

BOA; level 137). Here, to compare OBT and EBT strategies, we create inputs 𝑋 and outputs 𝑌 partitions (Table 1) as follows: 

𝑋 contains vertical profiles of dry-bulb air temperature (𝑇 in K; Figure 2a), atmospheric pressure (𝑝 in hPa; Figure 2b), and 110 

derived layer cloud optical depth (𝜏𝑐; Figure 2c) from other variables in the NWP-SAF dataset to simplify the creation of 

models described in this paper (section 2.4); 𝑌 contains vertical profiles of downwelling longwave radiation (𝐿↓ in W m-2; 

Figure 2d) computed from the physical model (section 2.4). We then use 𝑋 and 𝑌 in OBT strategies (Figure 1 A and B) and 

only 𝑋 in EBT (Figure 1 C and D). Prior to be used, the source dataset is shuffled at random and split into three batches of 10 

000 profiles (40 %) for training (𝑋train, 𝑌train), 5 000 (20 %) for validation (𝑋validation, 𝑌validation), and 10 000 (40 %) for testing 115 

(𝑋testing, 𝑌testing) and referred to as such throughout the paper. Furthermore, as both copula and ML models work on two-

dimensional data, datasets are converted to a matrix with samples as rows and flatten profiles per quantities as columns. To 

compute plots and statistics, the data are reconstructed to their original shape. 

 

 120 
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Figure 2. Profiles of (a) dry-bulb air temperature, (b) atmospheric pressure, (c) cloud optical depth, (d) downwelling longwave radiation 
from the NWP-SAF dataset (25 000 profiles; Eresmaa and McNally, 2014). Profiles are ordered using band depth statistics (López-Pintado 125 
and Romo, 2009) and shown for their most central (median) profile and grouped for the central 0–25 %, 25 – 50 % and 50 – 100 %. 

 

Table 1. Profiles of input and output quantities used in this study. Input quantities are dry-bulb air temperature 𝑻, atmospheric 
temperature 𝒑 and cloud optical depth 𝝉𝒄. 𝑻 and 𝒑 are taken directly from the NWP-SAF dataset (Eresmaa and McNally, 2014). 𝝉𝒄 is 

derived from other quantities as described in section  2.4. The output quantity is downwelling longwave radiation 𝑳↓ and is computed 130 
using the physical model described in section  2.4. The number of atmospheric model levels is 137 for full levels (FL) and 138 for half 
levels (HL). 

Symbol Name Unit Dimension 

(a) Inputs 

𝑇 Dry-bulb air temperature K FL 

𝑝 Atmospheric pressure Pa FL 

𝜏𝑐  Cloud optical depth 1 FL 

(b) Output 

𝐿↓ Downwelling longwave radiation W m-2 HL 
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2.3 Data generation 

Data generation is used to generate additional samples (here the atmospheric profiles) to be fed to the physical (section 2.4) 135 

and ML (section 2.5) model. Optimally, these synthetically generated data should resemble the observed data as closely as 

possible with regard to (i) the individual behaviour of variables (e.g. the dry-bulb air temperature at a specific level), and (ii) 

the dependence across variables and dimensions (e.g. the dry-bulb air temperature across two levels). Copulas are statistical 

models that allow to disentangle these two aims (Trivedi and Zimmer, 2006; Joe, 2014) and to generate new samples that 

are statistically similar to the original data in terms of their individual behaviour and dependence. 140 

 

2.3.1 Background on copula models 

Suppose we want to generate synthetic data from a probabilistic model for 𝑑 variables 𝑍1, … , 𝑍𝑑. To achieve the first aim, 

we need to find appropriate marginal distributions 𝐹, … , 𝐹𝑑. A simple approach is to approximate them by the corresponding 

empirical distribution functions. To achieve the second aim, however, we need to build a model for the joint distribution 145 

function 𝐹(𝑧1, … , 𝑧𝑑). The key result, Sklar’s theorem (Sklar, 1959), states that any joint distribution function can be written 

as 

𝐹(𝑧1, … , 𝑧𝑑) = 𝐶(𝐹1(𝑧1), … , 𝐹𝑑(𝑧𝑑)). 

The function 𝐶 is called copula and encodes the dependence between variables.  

 150 

Copulas are distribution functions themselves. More precisely, if all variables a continuous, 𝐶 is the joint distribution of the 

variables 𝑈1 = 𝐹1(𝑍1), … , 𝑈𝑑 = 𝐹𝑑(𝑍𝑑). This fact facilitates estimation and simulation from the model. To estimate the 

copula function 𝐶 , we (i) estimate marginal distributions 𝐹̂1 , … , 𝐹̂𝑑 , (ii) construct pseudo-observations 𝑈̂1 =

𝐹̂1 (𝑍1), … , 𝑈̂𝑑 = 𝐹̂𝑑 (𝑍𝑑), and (iii) estimate 𝐶 from the pseudo-observations. Then, given estimated models 𝐶, 𝐹̂1 , … , 𝐹̂𝑑  

for the copula and marginal distributions, we can generate synthetic data as follows: 155 

1. Simulate random variables 𝑈1, … , 𝑈𝑑 from the estimated copula  𝐶. 

2. Define 𝑍1 = 𝐹̂1

−1
(𝑋1), … , 𝑍𝑑 = 𝐹̂𝑑

−1
(𝑋𝑑). 
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2.3.2 Parametric copula families 

In practice, it is common to only consider sub-families of copulas that are conveniently parametrized.  There is a variety of 160 

such parametric copula families. Such families can be derived from existing models for multivariate distributions by inverting 

the equation of Sklar's theorem: 

𝐶(𝑢1, … , 𝑢𝑑) = 𝐹(𝐹1
−1(𝑢1), … , 𝐹𝑑

−1(𝑢𝑑)). 

For example, we can take 𝐹 as the joint distribution function of a multivariate Gaussian and 𝐹1, … , 𝐹𝑑 as the corresponding 

marginal distributions. Then the display above yields a model for the copula called Gaussian copula, which is parametrized 165 

by a correlation matrix. The Gaussian copula model subsumes all possible dependence structure in a multivariate Gaussian 

distribution. The benefit comes from the fact that we can combine a given copula with any type of marginal distributions, 

not just the ones the copula was derived from. That way, we can build flexible models with arbitrary marginal distributions 

and Gaussian-like dependence. The same principle applies to other multivariate distributions and many copula models have 

been derived, most prominently the Student t copula and Archimedean families. A comprehensive list can be found in Joe 170 

(2014). 

 

2.3.3 Vine copula models 

When there are more than two variables (𝑑 > 2) the types of dependence structures these models can generate is rather 

limited. Gaussian and Student copulas only allow for symmetric dependencies between variables. Quite often, dependence 175 

is asymmetric, however. For example, dependence between 𝑍1  and 𝑍2  may be stronger when both variables take large 

values. Many Archimedean families allow for such asymmetries but require all pairs of variables to have the same type and 

strength of dependence. 

 

Vine copula models (Aas et al., 2009; Czado, 2019) are a popular solution to this issue. The idea is to build a large dependence 180 

model from only two-dimensional building blocks. We can explain this with a simple example with just three variables 

𝑍1, 𝑍2, 𝑍3 . We can model the dependence between 𝑍1  and 𝑍2  by a two-dimensional copula 𝐶1,2  and the dependence 

between 𝑍2 and 𝑍3 by another, possibly different, copula 𝐶2,3. These two copulas already contain some information about 

the dependence between 𝑍1 and 𝑍3, the part of the dependence that is induced by 𝑍2. The missing piece is the dependence 

between 𝑍1 and 𝑍3 after the effect of 𝑍2 has been removed. Mathematically, this is the conditional dependence between 𝑍1 185 

and 𝑍3 given 𝑍2 and can be modeled by yet another two-dimensional copula 𝐶1,3|2. The principle is easily extended to an 

arbitrary number of variables 𝑍1, … , 𝑍𝑑. Algorithms for simulation and selecting the right conditioning order and parametric 

families for each (conditional) pair are given in Dißman et al. (2013). 
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Because all two-dimensional copulas can be specified independently, such models are extremely flexible and allow for highly 190 

heterogenous dependence structures. Using parametric models for pair-wise dependencies remain a limiting factor, 

however. If necessary, it is also possible to use nonparametric models for the two-dimensional building blocks. Here, the 

joint distribution of pseudo-observations 𝑈̂1, 𝑈̂2 is estimated by a suitable kernel density estimator (see Nagler et al., 2017). 

 

2.3.4 Implementation 195 

Here we use Synthia (Meyer and Nagler, 2020), to fit three different copula types: Gaussian, Vine-parametric, Vine-

nonparametric. Each copula model is fitted to the training set 𝑋train in OBT, and to both, 𝑋train and 𝑌train sets, in EBT. To 

evaluate the impact of copula-augmented datasets on the ML inference, we generate synthetic profiles with augmentation 

factors of 1x, 5x, and 10x the number of profiles included in the source training dataset (i.e. 10 000 profiles). These are then 

used to create augmented versions of training datasets, here defined as 𝑋′train and 𝑌′train, each containing the source plus 200 

the synthetically generated profiles (i.e. with 20 000, 60 000, or 110 000 profiles). As the generation of new profiles with 

copula models is random, the generation is repeated 10 times for each case to allow for meaningful statistics to be computed. 

 

2.4 Target generation 

Target generation (Figure 1 C-D) is used in EBTs to generate outputs from corresponding inputs. Here, however, to compare 205 

results from the two different strategies described in this paper (i.e. OBT vs EBT), we also use target generation to compute 

outputs for the source dataset 𝑌 in OBT strategies. In all cases, outputs 𝑌 are computed using a simple toy model based on 

Schwarzschild’s equation (e.g. Petty, 2006) to estimate the downwelling longwave radiation under the assumption that 

atmospheric absorption does not vary with wavelength, as: 

 210 

𝑑𝐹

𝑑𝑧
= 𝑎(𝑧)[𝐵(𝑧 ) − 𝐹] (1) 

 

where 𝑧 is the geometric height, 𝐵 is the Planck function at the temperature at level 𝑧 (i.e. 𝐵 = 𝜎SB𝑇4, where 𝜎SB is the 

Stefan-Boltzmann constant; giving the flux in W m-2 emitted from a horizontal black body surface), and 𝑎 is the rate at which 

radiation is intercepted/emitted.  A common approximation is to treat longwave radiation travelling at all angles as if it were 215 

all travelling with a zenith angle of 53 degrees (Elsasser, 1942): in this case 𝑎 = 𝐷𝛽𝑒 where 𝛽𝑒 is the extinction coefficient of 

the medium, and 𝐷 = 1.66 = 1/cos(53) is the diffusivity factor, which accounts for the fact that the effective path length 
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of radiation passing through a layer of thickness ∆𝑧 is on average 1.66∆𝑧  due to the multiple different angles of propagation. 

In the context of ML, 𝑎(𝑧) and 𝐵(𝑧) are known and 𝐹(𝑧) is to be predicted. Here we use the difference in two atmospheric 

pressures expressed in sigma coordinates (Δ𝜎 , where 𝜎  is the pressure 𝑝  at a particular height divided by the surface 220 

pressure 𝑝0) instead of 𝑧. The cloud layer optical depth 𝜏 =  𝛽𝑒Δ𝑧 is calculated from the total column gas optical depth 𝜏𝑔 

and layer cloud optical depth 𝜏𝑐  as 𝜏 = 𝜏𝑐 + 𝜏𝑔 Δ𝜎𝑖  as Δ𝜎 is the fraction of mass of the full atmospheric column in layer 𝑖. 

Then, as the downwelling flux at the top of the atmosphere is 0, the equation is discretized as follows assuming 𝐵 and 𝑎 are 

constant within a layer: 

 225 

𝐹𝑖−1/2 =  𝐹𝑖+1/2 (1 − 𝜖𝑖) + 𝐵𝑖𝜖𝑖, (2) 

 

where 𝐵𝑖  is the Planck function of layer 𝑖, 𝜖𝑖 = 1 − 𝑒−𝑎𝑖Δ𝑧 = 1 − 𝑒𝐷𝜏 is the emissivity of layer 𝑖, 𝐹𝑖+1/2 is the downwelling 

flux at the top of layer 𝑖, and 𝐹𝑖−1/2 is the downwelling flux at the bottom of layer 𝑖. We compute 𝐿↓ in W m-2 from 𝑇 in K, 𝑝 

in Pa, and 𝜏𝑐  using the source 𝑋 or augmented 𝑋’ data depending on the strategy (i.e. OBT or EBT). To reduce, and thus 230 

simplify, the number of quantities used in the physical and ML models (section 2.5), 𝜏𝑐  is pre-computed and used instead of 

vertical profiles of liquid and ice mixing ratios (𝑞𝑙 and 𝑞𝑙 in 1) and effective radius (𝑟𝑙 and 𝑟𝑙 in m) as 
3

2

Δ𝑝

𝑔
(

𝑞𝑙

𝜌𝑙𝑟𝑙
+

𝑞𝑖

𝜌𝑖𝑟𝑖
), where 

𝜌𝑙 is the density of liquid water (1 000 kg m-3), 𝜌𝑖  is the density of ice (917 kg m-3), 𝑔 is the standard gravitational acceleration 

(9.81 m s-2). For 𝜏𝑔 we use a constant value of 1.7 determined by minimizing the absolute error between profiles computed 

with this simple model and the comprehensive atmospheric radiation scheme ecRad (Hogan and Bozzo, 2018). 235 

 

2.5 Estimator training 

As the goal of this paper is to determine whether the use of synthetic data improves the prediction of ML models, here we 

implement a simple feedforward neural network (FNN). FNNs are one of the simplest and most common neural networks 

used in ML (Goodfellow et al., 2016) and have been previously used for similar weather and climate applications (e.g. 240 

Chevallier et al., 1998; Krasnopolsky et al., 2002). FNNs are composed of artificial neurons (conceptually derived from 

biological neurons) connected with each other where information moves forward from the input nodes, through hidden 

nodes.  The multilayer perceptron (MLP) is a type of FNN composed of at least three layers of nodes: an input layer, a hidden 

layer, and an output layer with all but the input nodes using a nonlinear activation function. 

 245 

Here we implement a simple an MLP consisting of 3 hidden layers with 512 neurons each. This is implemented in TensorFlow 

(Abadi et al., 2015), and configured with elu activation function, Adam optimizer, Huber loss, 1 000 epochs limit, and early 
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stopping with patience of 25 epochs. The MLP is trained with profiles of dry-bulb air temperature (𝑇  in K; Figure 2a), 

atmospheric pressure (𝑝 in hPa; Figure 2b), and layer cloud optical depth (𝜏𝑐; Figure 2c) as inputs and profiles of longwave 

downwelling longwave radiation (𝐿↓ in W m-2; Figure 2d) as outputs. Inputs are normalized and both inputs and outputs are 250 

flattened into feature vectors. The baseline case (Figure 1 A or C) use 10 000 input profiles without data augmentation (i.e. 

using 𝑋train and 𝑌train) for training and copula-based cases (Figure 1 B and D) use either 20 000, 60 000, or 110 000 profiles 

(i.e. using 𝑋′train  and 𝑌′train ). The validation dataset 𝑌validation  of 5 000 profiles is used as input for the early stopping 

mechanism while the test dataset 𝑌test of 10 000 profiles is used to compute the error statistics using evaluation metrics 

described in section 3.2. Because of the stochastic nature of the MLP used, training and inference is repeated 10 times for 255 

each case to allow for meaningful statistics to be computed. Given that the generation of random profiles in the case of 

augmented datasets (𝑋′train and 𝑌′train) is also repeated 10 times (see section 2.3.4) all cases using data generation comprise 

of 100 iterations in total (i.e. for each data generation run, we run the ML fitting 10 times). 

 

3. Evaluation metrics 260 

We conduct a twofold evaluation: first we assess the quality of synthetic data produced by different copula classes (section 

3.1), then we assess the prediction error of ML model (section 3.2) trained using different augmentation factors. Although 

the former may be of interest to determine how well copula models may be used to generate profiles of different 

atmospheric quantities and to evaluate whether dependencies between variables have been captured, the latter is the main 

focus here, used to evaluate whether ML models trained with augmented datasets of real and synthetic data have a lower 265 

prediction error than those trained with only the real data. 

 

3.1 Copula 

The quality of synthetic data is assessed in terms of summary statistics (e.g. Seitola et al., 2014) between the training 𝑋train 

and 𝑌train and copula-simulated 𝑋′train and 𝑌′traindataset. As the quality of the fitting may be different between the two 270 

strategies used, we compute separate statistics for OBT (𝑋train and 𝑌train vs 𝑋′train and 𝑌′train) and EBT (𝑋train vs 𝑋′train), i.e. 

the former having been fitted to both inputs and output pairs and the latter to only the inputs. For each copula type and 

training strategy, we compute a vector of summary statistics 𝑆𝑖 = 𝑓(𝐏𝑖) where 𝑓 is the statistic function and 𝐏𝑖 = 𝐃𝒘𝑖, with 

𝐃 a matrix of flattened source or simulated data and 𝒘 a vector of random numbers from the 𝑖th iteration. Summary 

statistics are then computed for mean, variance, and quantiles, iterating 100 times to allow for meaningful statistics to be 275 
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computed. As we consider random linear combinations of variables in source and copula-generated data, we expect these 

summaries to coincide only if both marginal distributions and dependence between variables are captured. 

3.2 Machine learning 

The prediction error of the ML model is investigated by comparing outputs computed by the physical model with those 

computed at inference by the ML model fed with test dataset 𝑋test described in section 2.2. Here we use two common bulk 280 

error metrics to summarize errors across multiple profiles and atmospheric levels: mean bias error (MBE) and mean-absolute 

error (MAE). These are computed from a vector of random variables representing the differences, or error, 𝒅 = (𝑑1, … , 𝑑𝑖) 

between the physically predicted 𝑌test  and ML predicted 𝑌′test (i.e. 𝒅 =  𝑌test  −  𝑌′test ). Bulk error statistics are computed 

for the vector of outputs 1, … , 𝑁 for the MBE and MAE (Table 2). 

 285 

Table 2. Bulk error statistical metrics used in the machine learning evaluation. Mean bias error (MBE), mean-absolute error (MAE). 

MBE MAE 

1

𝑁
∑ 𝑑𝑖

𝑁

𝑖=1

 
1

𝑁
∑|𝑑𝑖|

𝑁

𝑖=1

 

 

4 Results 

4.1 Copula 

We first check whether copula models can generate data that are statistically alike those in the source dataset. To this end, 290 

we compare summary statistics of random projections of generated and source data as described in section 3.1. Figure 3 

shows scatterplots of summary statistics for their (a) mean, (b) variance, (c) standard deviation, and (d) 10 %, (e) 50 % and 

(f) 90 % quantiles. Summaries of the source data are on the x-axis while summaries of copula-generated data are on the y-

axis. Each point corresponds to a random projection (100 points in total). For a perfect copula model, we expect all the 

simulated points to fall on the main diagonal where 𝑥 = 𝑦. Figure 3 shows that for all the copula models and configurations 295 

(with or without outputs) studied, the synthetically-generated data are similar to the real data, with larger errors in variance 

and standard deviation. 
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Figure 3. Summary statistics 𝑺𝒊 from 100 copula iterations for (a) mean, (b) variance, (c) standard deviation, and (d) 10 %, (e) 50 %, and 
(f) 90 % quantiles. Each point corresponds to a single iteration. Units are arbitrary. The x axis represents the projection of the true data 300 
𝑿𝐭𝐫𝐚𝐢𝐧 while the y axis that of the copula generated data 𝑿′𝐭𝐫𝐚𝐢𝐧. Results reported for Gaussian, Vine-parametric, Vine-nonparametric 
copulas fitting to inputs or input and output pairs (i.e. 𝑿𝐭𝐫𝐚𝐢𝐧 vs 𝑿′𝐭𝐫𝐚𝐢𝐧 or 𝑿𝐭𝐫𝐚𝐢𝐧 and 𝒀𝐭𝐫𝐚𝐢𝐧 vs 𝑿′𝐭𝐫𝐚𝐢𝐧 and 𝒀′𝐭𝐫𝐚𝐢𝐧) – see legend. 

Qualitatively, we can also evaluate copula-generated profiles in terms of their overall shape and smoothness across multiple 

levels, and range and density at each level. To this end we plot a side-by-side comparison of source (Figure 4left panel) and 

Gaussian-copula generated (Figure 4right panel) profiles showing the median profile and a random selection of 90 profiles 305 

grouped in batches of 3 (i.e. each having 30 profiles) for the central 0-25 % and outer 25-50 %, 50-100 % quantiles, calculated 

with band depth statistics (López-Pintado and Romo, 2009). Simulated profiles of dry-bulb air temperature (Figure 4b) appear 

less smooth than the real (Figure 4a) across levels; however, their density and range are simulated well at each level. 

Simulated profiles of atmospheric pressure (Figure 4d) are simulated well; they are smooth across all levels with a similar 

range and density than the real (Figure 4c). The highly non-Gaussian and spikey profiles of cloud optical depth (Figure 4e) 310 

make a qualitative comparison difficult, but the simulated profiles (Figure 4f) have a similar range and density, with high 

density for low values and most of the range between levels 80 and 120. Finally, copula-simulated profiles of downwelling 

longwave radiation (Figure 4h; only computed for OBT strategies) are noisier that the real (Figure 4g) but with a similar range 

and density. 
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 315 

Figure 4. Profiles of (left) real and (right) Gaussian copula-generated data of (a-b) dry-bulb air temperature, (c-d) atmospheric pressure, 
(e-f) cloud optical depth, (g-h) downwelling longwave radiation. Median profile shown in black and random selection of 90 profiles 
grouped in batches of 3 (i.e. each having 30 profiles) for the central 0-25 % and outer 25-50 %, 50-100 % calculated with band depth 
statistics (López-Pintado and Romo, 2009). 
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4.2 Machine learning 320 

We report results for OBT and EBT strategies with or without data generation. Errors statistics are computed with metrics 

defined in section 3.2 against the test dataset of 10 000 profiles defined in section 2.2. Boxplots of bulk MBE and MAE are 

shown in Figure 5 for OBT (left) and for EBT (right). Summary bulk MBE and MAE for ML models with lowest MAE using an 

augmentation factor of 10x are reported in Table 3. A qualitative side-by-side comparison of MLP-generated profiles using 

Gaussian copula-generated profiles with augmentation factor of 10x and the corresponding baseline are shown in Figure 6. 325 

 

MBEs in OBT (Figure 5a) are higher than the baseline across all copula models and augmentation factors, with median MBE 

and spread generally increasing with larger values of augmentation factors. Conversely, MBEs in EBT (Figure 5b) are generally 

lower than the baseline across all copula types and augmentation factors, with median MBE and spread decreasing with 

larger values of augmentation factors. MAEs in OBT (Figure 5c) do not improve from the baseline when additional synthetic 330 

data or different copula types are used. Overall, the Gaussian copula model performs better than the Vine-parametric or 

Vine-nonparametric models. This median MAE with 1x augmentation factor is approximately 2 W m-2 for Gaussian,                     

2.4 W m-2 for Vine-parametric and 2.6 W m-2 for Vine-nonparametric, increasing with larger augmentation factors. Conversely 

to OBT, MAEs in EBT show a net improvement from the baseline across all copula models and augmentation factors (Figure 

5d). When using an augmentation factor of 1x, the median MAE is reduced to approximately 1.1 W m-2 using copula models 335 

from a baseline of approximately 1.4 W m-2 and further reduced with increasing augmentation factors. In the best case, 

corresponding to an augmentation factor of 10x (i.e. with an additional 100 000 synthetic profiles added to the training 

source dataset), the copula and ML model combination producing the lowest values of MAE (Table 3) shows that both MBE 

and MAE are reduced from the baseline case. The MBE is reduced from a baseline of 0.08 W m-2 to -0.02 and -0.05 W m-2 for 

Gaussian and Vine-nonparametric respectively but increased to 0.10 W m-2 for Vine-parametric. MAEs are reduced from a 340 

baseline of 1.17 W m-2 to 0.45, 0.56 and 0.44 W m-2 for Gaussian, Vine-parametric, Vine-nonparametric copula type 

respectively. 

 

The ML training configuration to achieve the lowest overall MBE and MAE combination during inference correspond to a 

Gaussian copula and augmentation factor of 10x (Table 3). Differences (or errors) between the physically predicted 𝑌test  and 345 

ML predicted 𝑌′test are shown for the baseline (Figure 6a) and Gaussian copula (Figure 6b). These are shown grouped by 

their central 0-25 % and outer 25-50 %, 50-100 %. Qualitatively most ML generated profiles show improvements from to the 

baseline. For the most central 25 % profiles are within ±20 W m-2 for the Gaussian copula case, and about ±40 W m-2 for the 

baseline case. Near surface errors (levels 130-BOA) are reduced to approximately ±5 W m-2 from approximately ±10 W m-2. 
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 350 

 

Figure 5. Training errors for (left) observation-based training and (right) emulation-based training grouped by different copula types 
(Gaussian: blue, Vine-parametric: yellow, Vine-nonparametric: red) and augmentation factors (1x, 5x, 10x) for the mean bias error 
(MBE; a-b) and mean absolute error (MAE; c-d). The median for the baseline case is shown in black and the range shaded in grey. 

 355 

 

Table 3. Emulation-based training bulk mean bias error (MBE) and mean absolute error (MAE) for baseline ML model, and copula and 
ML model combination producing the lowest values of MAE. Baseline case trained using 10 000 real profiles and copula cases training 
using augmented dataset containing 110 000 profiles (10 000 real and 100 000 synthetic), i.e. with an augmentation factor of 10x. 

Case name MBE in W m-2 MAE in W m-2 

Baseline  0.08 1.17 

Gaussian -0.02 0.45 

Vine-parametric  0.10 0.56 

Vine-nonparametric -0.05 0.44 

  360 
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Figure 6. ML errors in predicting downwelling longwave radiation for (a) baseline and (b) emulation-based training strategy using 110 
000 profiles (10x augmentation factor; Gaussian copula). The median (most central) profile is shown in black and the most central 25 365 
%, and outer 25 – 50 % and 50 – 100 % profiles are computed using band depth statistics and shown in shades of blue. 

5 Discussion and conclusion 

Results from the machine learning evaluation show that bulk errors are cut by up to 75 % for the mean bias error (from 0.08 

to -0.02 W m-2;Table 3) and by up to 62 % (from 1.17 to 0.44 W m-2;Table 3) for the mean absolute error in emulation-based 

training (EBT). This is not the case in observation-based training (OBT) where the use of synthetic data negatively affect the 370 

error (Figure 5). This finding is not surprising as model fits are merely an approximation of the real data and it is therefore 

unlikely to see improvements in predictions from OBT strategies from this or other type data generation methods (for type 

or model and configuration used). A qualitative comparison of synthetically generated profiles (Figure 4) shows that, 

although the main structure is captured, synthetic profiles tend to be less smooth and noisier than the real ones. This, 

together with the added complexity of having to capture the dependence between input and output pairs, may lead copula 375 

model to generate training samples that are too unrepresentative of the test data in the case of OBT strategies. On the other 

hand, when a physical model is available and an EBT strategy is used, (copula-based) data generation has the potential to 

improve error statistics by enriching the training dataset. In such cases, the dependence between inputs and outputs does 

not need to be captured as it is already modelled by the physical model. Instead, the data generation model needs to 

generate approximate inputs that are representative and valid for the physical model in use. In the simplest case, this may 380 

be, as simple as respecting the inverse relationship of pressure and temperature of ideal gasses or the positivity of absolute 

temperature. 
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Previous studies (e.g. Patki et al., 2016) have shown how copula-based models may be used to overcome data licensing 

restriction. Here we show how copula-based models may be used to improve the prediction of ML models in EBT strategies. 

This is done by generating augmented datasets containing statistically similar profiles in terms of their individual behavior 385 

and dependence across variables (e.g. dry-bulb air temperature at a specific level and across two levels). Although the focus 

of this paper is to evaluate copula-based data generation models that improve predictions, we speculate that the same or 

similar methods of data generation have the potential to be used in several other ML-related applications such as to: (i) test 

ML model architectures (e.g. instead of cross validation, one may generate synthetic datasets of different sizes to test the 

effect of the sample size on different ML architectures); (ii) generate data for un-encountered conditions (e.g. for climate 390 

change scenarios, by extending the range of the data, or relax marginal distributions); (iii) data compression (e.g. by storing 

reduced parameterized versions of the data if the number of samples is much larger than the number of features).  

 

Although so far, we have only highlighted benefits of copula-based model, several limiting factors should be considered 

based on the specific problem and application. A key factor for very high-dimensional data is that both Gaussian and Vine 395 

copula models scale quadratically in the number of features – in terms of both memory and computational complexity. This 

can be alleviated by imposing structural constraints on the model, for example using structured covariance matrix or 

truncating the vine after a fixed number of trees. However, this limits their flexibility and adds some arbitrariness to the 

modelling process. A second drawback compared to GANs is that the model architecture cannot be tailored to a specific 

problem, like images. For such cases, a preliminary data compression step as in Tagasovska et al. (2019) may be necessary. 400 

 

As highlighted here, data generation in EBT strategies may be of particular interest to scientists and practitioners looking to 

achieve a better generalization of their ML models (i.e. synthetic data may act as a regularizer to reduce overfitting; Shorten 

and Khoshgoftaar, 2019) and although a comprehensive analysis of prediction errors using different ML model architectures 

is out of scope, our work is a first step towards further research in this area. Moreover, although we did not explore the 405 

generation of data for un-encountered conditions (e.g. by extending the range of air temperature profiles while keeping a 

meaningful dependency across other quantities and levels), the use of copula-based synthetic data generation may prove 

useful to make emulators more resistant to outliers (e.g. in climate change scenario settings) and should be investigated in 

future research. 

  410 
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